13.1) Curves

1. Parametric and Vector Equations for Curves:

As discussed in Section 12.1, in two-dimensional space, an equation in x and y gives us a
curve (possibly a line, which is a straight curve), whereas in three-dimensional space, an
equation in x, y, and z gives us a surface (possibly a plane, which is a flat surface). What
kind of equation will give us a curve in three-dimensional space?

In Sections 12.2 and 12.5, we saw that a line in either two or three dimensions can be
represented by parametric equations, which express x, y, and (in the three-dimensional
case) z in terms of an independent parameter, usually . We also saw that the parametric
equations can be combined into a single vector equation for a line.

This same approach will now be applied to curves in general, whether two-dimensional or
three-dimensional. (Three-dimensional curves are known as space curves, while
two-dimensional curves are known as plane curves.)

The process of writing parametric equations to represent a curve is known as
parameterizing the curve. There are many different ways to parameterize a given curve.

As with a line, any parametrization implies a particular orientation or direction for the
curve. The positive or forward direction of the curve is the direction followed as the
parameter increases, and the negative or backward direction of the curve is the direction
followed as the parameter decreases. (When we refer to “the direction” of a curve, we
mean the positive direction.) Different parameterizations may yield different orientations.

If a plane curve is simple and closed, like a circle, then its direction can be classified as
clockwise or counter-clockwise. For plane curves such as vertical parabolas, direction can
be classified as leftward or rightward. For plane curves such as horizontal parabolas,
direction can be classified as upward or downward. For complicated plane curves, none of
these classifications may be applicable. For space curves, direction can be even more
challenging to describe.

A curve may be represented by a set of parametric equations:

e Foraplane curve, x = x(¢), y = y(¢).

e Foraspace curve, x = x(¢), y = y(t), z = z(¢).

The domain of the parametric equations could be (-, ), or it could be some other interval,
such as [0,) or [0,2x] or (=%, 7).

We usually think of ¢ as representing elapsed time, and we think of the curve as the path of
a moving particle. The parametric equations give a unique position for the particle at each
point in time. This is known as a motion paradigm. Any particular value of ¢ is referred to
as an instant.



Any real value of ¢ generates a unique point on the curve, denoted P,. In the
two-dimensional case, P, = (x(¢),y(¢)). In the three-dimensional case, P, = (x(¢),y(t),z(2)).
Of particular interest are the points P, and P,, which are referred to as the initial or
starting point and the unitary point, respectively. We typically write Py as (xo,y0) or
(x0,¥0,20) instead of (x(0),y(0)) or (x(0),y(0),z(0)). Likewise, we typically write P, as (x1,y1)
or (x1,y1,z1) instead of (x(1),y(1)) or (x(1),y(1),z(1)). The initial and unitary points depend
on the chosen parameterization—i.e., different parametrizations may have different initial
and unitary points. We can say the forward direction of the curve is the direction from P, to
P.

The plane curve y = tanx, forx € (-4, ), can be parameterized as x = ¢, y = tant. The

domain is (-, 7). (In general, if a plane curve is the graph of a function, y = f(x), then we
canletx = tand y = f{t).) Here, the initial point is (0,0), and the direction is rightward and
upward.

If the circle x> + y?> = 9 is parameterized as x = 3cost, y = 3sin¢, the starting point is (3,0)
and the direction is counter-clockwise. If we use the parameterization x = -3 cosz,

vy = 3sint, the starting point is (-3,0) and the direction is clockwise. If we use the
parameterization x = 3cost, y = —3sint, the starting point is (3,0) and the direction is
clockwise. If we use the parameterization x = 3sinz, y = 3cost, the starting point is (0, 3)
and the direction is clockwise. All of these parameterizations have the same domain, [0,27]
(assuming we want our particle to make one complete revolution).

The parabola y = —2x? + 5 could be parameterized so that x = ¢, y = —2¢*> + 5, in which case
Py = (0,5) and P, = (1,3). Oritcould be parameterized so that x = —¢, y = -2¢> + 5, in
which case Py, = (0,5) and P, = (-1,3). Or it could be parameterized so that x = 7+ 4,

y = —=2t> — 16t — 27, in which case P, = (4,-27) and P, = (5,-45). The first and third
parameterizations give us a rightward orientation, whereas the second gives us a leftward
orientation. All of these parameterizations have the same domain, (—oo, ).

Suppose a particle in x,y,z space moves around and around a vertical circular cylinder in
such a way that its height (i.e., its z coordinate) steadily increases. In other words, the
particle follows a spiral path that looks like a “corkscrew” or a “slinky.” This path is a space
curve known as a helix. A simple example would be the curve x = 3cost, y = 3sint, z = ¢,
which lies on the cylinder x? + y? = 9. Its starting point is (3,0,0). Its domain is (—o0,0),
assuming we want the helix to extend infinitely far both up and down. However, if we want
the helix to go no lower than the x,y plane, then the domain would be [0, x).

A spherical curve is a space curve that lies on a sphere. A simple example would be the
curve x = —SL e L, which lies on the sphere x> + 12 +z2 = 1. Its
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starting point is (1,0,0). Its domain is (—o0, ).

A space curve may be defined as the intersection of two given surfaces. For example, the
intersection of the circular cylinder x> + y? = 1 and the plane y +z = 2 gives us a slanted
ellipse. The orthogonal projection of this ellipse onto the x,y plane is the circle x? + y? = 1.
We already know that this circle can be parameterized as x = cost, y = sintz. Since the



equation of the plane can be written z = 2 — y, the ellipse can be parameterized as x = cost,
y =sint, z = 2 —sint. The domain is [0,27] (assuming we want our particle to make one
complete revolution). The initial point is (1,0,2). The direction is counter-clockwise when
viewed from above (but clockwise when viewed from below). See the illustration on page
850 of your text.

The parametric equations for a curve can be combined into a single vector equation. Let
r(¢) be the position vector for the point P,.

e In two-dimensional space, r(¢) =< x(¢),y(¢) >, or r(¢) = x()i + y(2)j.

e In three-dimensional space, r(¢) = < x(¢),y(¢),z(t) >, or r(¢) = x(6)i + y(¢)j + z(H) k.

The parametric functions x(¢), y(¢), and (in the three-dimensional case) z(¢) are referred to
as the component functions of r(7).

The plane curve y = tanx would have the vector equation r(¢) = < ¢, tant >.

The circle x? + y*> = 9 could have the vector equation r(r) = < 3cost,3sint > or r(¢) =
< =3cost,3sint > or r(t) =< 3cost,—3sint > or r(¢f) = < 3sint,3cost >, depending on which
parameterization we adopt. We could also write these equations as follows:

e r(f) =3 < cost,sint >
® r(f) =3 < —cost,sint > orr(t) =-3 < cost,—sint >
e r(f) =3 < cost,—sint >orr(t) =-3 < —cost,sint >
e r(f) =3 < sint,cost >

The parabola y = —2x? + 5 could have the vector equation r(¢) = ¢i+ (-2¢> + 5)j or
r(t) = —ti+ (=22 +5)jorr(t) = (t+4)i+ (-2t> — 16t - 27)j, depending on which
parameterization we adopt.

The helix discussed above would have the vector equation r(¢) = < 3cost,3sint,t >.

The spherical curve discussed above would have the vector equation
l'(t) — _cost §.4 sint J + t
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The slanted ellipse discussed above would have the vector equation
r(f) =< cost,sint,2 —sint >.

The function r(¢) is a vector-valued function of one real variable (or parameter), . Itis
known as a position function for the curve, because it gives us the position of a moving
particle at any instant. (Bear in mind, this function depends upon the chosen
parameterization for the curve. A given curve has many possible parameterizations and
hence many possible position functions.)

The magnitude of r(¢), denoted |r(¢)| or »(¢), is a scalar-valued function. It gives us the
particle’s distance from the origin at any instant.

e Foraplane curve, r(¢) = /x(2)* + y(1)*



e For a space curve, r(f) = Jx(t)> +y(1)? + z(1)?

For a space curve, if the value of (¢) is constant for all ¢, then the curve is a spherical curve
centered at the origin, and the constant value of r(¢) is the radius of the sphere.

2. Limits And Continuity for Position Functions:

The following discussion will focus on two-dimensional position functions (i.e., position
functions for plane curves), but all the concepts discussed can also be applied to
three-dimensional position functions (i.e., position functions for space curves).

In Calculus |, we learned the basic concept of the limit. If we have a function y = f(x), we
can ask, does y approach any particular value as x approaches some specified value, such
as a. If it does, we say the function has a limiting value (or just a limit, for short) as x
approaches a. Suppose we have such a value. Call it L. We can say, “y approaches L as
x approaches a,” which can be written more compactly as follows: y - L as x - a. We can
also write lim,., y = L, or lim,., f{x) = L, which would be pronounced, “The limit to the
function f{x) as x approaches a is L.” For example, lim,.o +sinx = 1.

In Calculus |, we were dealing with functions that produced numerical values (i.e., for any
given numerical value of x, the function y = f{x) produces a numerical value of y). But now,
in Calculus Ill, we are dealing with functions that produce vector values. In other words, the
vector equation of a plane curve, r(z) = < x(¢),y(t) >, may be thought of as a function whose
input is the scalar (or real number) ¢, and whose output is the vector r(t). For instance,
given the numerical value ¢ = 2, the function r(¢) =< #3, % > produces the vector < 8, % >.
Can we apply the concept of the limit to such functions? We can! Here is how...

Given the vector-valued function r(¢) = < x(¢),y(¢) >, we can ask, does r(¢) approach any
particular vector value as t approaches some specified numerical value, such as a. Ifit
does, we say the function has a limiting (vector) value (or just a limit, for short) as ¢
approaches a. Suppose we have such a vector value. Callit L. We can say,

“r(¢) approaches L as ¢ approaches a,” which can be written more compactly as follows:
r(t) > Last - a. We can also write lim.., r(¢) = L, which would be pronounced, “The
limit to the function r(¢) as ¢ approaches a is L.”

That’s the basic idea. Now how do we go about finding this sort of limit? We use the
following principle...

o Ifr(¢) =< x(2),y(t) >, then lim., r(¢) = < lim.,x(¢),lim ., y(¢) >
e Equivalently, if r(z) = x(¢)i + y(¢)j, then
lime, r(f) = limeo, x(6)i + limg, y(2)j
Essentially, this says the limit distributes in the same way as scalar multiplication—recall that
cr(t) =< cex(1),cy(t) >.

Each of the limits on the right side of the equation can be evaluated using the methods of
Calculus I.



Suppose r(f) = L sint i+ % j. Find lim.o r(2).
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Solution: limwo r(z) = limy 4 sinz i+ limeo j=1i-3j

As we learned in Calculus I, some limits do not exist. For instance, lim,.o sin - does not
exist, due to infinite oscillation. A limit “not existing” includes the possibility that the function
could approach infinity. For instance, lim,. XLZ does not exist, because the function

approaches infinity as x approaches 0. We may write lim,. XLZ = oo, but it is still the case

that the limit does not exist! (Saying the limit “exists” means the function approaches a
unique real number value, and « is not a real number.)

Likewise, in this new situation, a limit may or may not exist. In order for lim.., r(¢) to exist,
both limits on the right side of the equation must exist. In other words, lim.., r(¢) exists if
and only if both of the following limits exist:

e lim,.,, x(¢)

o lim.,y(?)

If either of these does not exist, then lim,., r(z) does not exist.

For instance, suppose r(f) =< 5¢+ 2, % >. lim,3 r(¢) does not exist, because lim,.; %
does not exist.

In Calculus |, we learned the concept of continuity. If we have a function y = f(x), and if
we have a specified value of x, such as a, we can ask whether or not the function is
continuous at a. In order for the function to be continuous at a, all three of the following
conditions must be met:

1.  fla) must be defined. In other words, a must be in the domain of /.

2. lim,.,, f{x) must exist.

3. lim,., f{x) must be equal to f{a), i.e., lim,., fix) = fla).

If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Books or teachers may sometimes cite only the third condition listed above. Their thinking
is that saying lim,.., f{x) = f{la) presupposes both condition #1 and condition #2. However, |
believe it is best to think of it as three separate conditions, and to check them in the order |
have specified. First check condition #1; if it fails, go no further. If condition #1 is met, then
check condition #2; if it fails, go no further. If condition #2 is met, then check condition #3.

If we know in advance (based on some previously established theorem) that the function fis
continuous at a value a, then we can evaluate lim,.,, f{x) by simple “plug and chug,” i.e., by
simply evaluating f{a). For instance, we have a theorem that says a polynomial function is
continuous for all real values of x. Hence, to evaluate lim,.s (3x> — 7x + 4), we just plug in 5
for x, giving us 44. But be careful. Plug and chug does not work when the function is not
continuous! For instance, you cannot evaluate lim,.o < sinz by plug and chug.



The concept of continuity can be applied to vector-valued functions. The function

r(¢) =< x(¢),y(¢) > is continuous at ¢t = « if and only if all three of the following conditions
are met:

1. r(a) must be defined, which means x(a) and y(a) must both be defined. In other
words, a must be in the domain of each function.

2. lim,, r(z) must exist, which means lim.,, x(¢) and lim.., y(¢f) must both exist.

3. lim., r(z) must equal r(a), which means lim.., x(¢) = x(a) and lim., y(¢) = y(a).
If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Here is a three-dimensional example: The function r(r) = (1 + )i+t j+ %k has a
discontinuity at 0. lim.o r(#) =i+ k.



